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Dr. Lyons’ doctorate degree is in human genetics from the University of Pittsburgh, Graduate 
School of Public Health. She spent seven years at the National Cancer Institute, Laboratory of 
Genomic Diversity developing genetic resources, working with early generation Bengal cats, 
and collecting disease and phenotypic traits for the domestic cat.  In 1999, she moved to the 
University of California - Davis, School of Veterinary Medicine to continue research on cats, 
including the identification of inheritable disease mutations.  She identified the DNA variant for 
the most common inherited disease in cats, polycystic kidney disease, and has been involved 
with the identification of over 20 cat DNA variants, including many involving coat colors, fur 
types, B blood type and other diseases.  In 2013, Dr. Lyons joined the University of Missouri – 
Columbia, College of Veterinary Medicine as the Gilbreath-McLorn Endowed Professor of 
Comparative Medicine.  Dr. Lyons has managed a cat colony of different breeds and species for 
over 20 years and has two cats or her own, Withers and Watson. 
 
Dr. Lyons received her first Winn Feline Foundation award while at the National Cancer Institute 
that focused on the genetics of the Burmese craniofacial defect. The WFF and the Lyons Feline 
Genetics Laboratory have continued a successful partnership, identifying important disease 
mutations such as Polycystic Kidney Disease, Bengal and Persian retinal degeneration, and 
blood group, as well as completing cat population genetic studies.  Winn Feline Foundation was 
one of the first to sponsor the cat DNA array studies and the 99 Lives Cat Genome Sequencing 
Project, which now has over 100 cats and many wild felids in the database of cat genomes. 
 

  



Genetics and Precision Medicine: State of the Art Health Care for Cats! 
 
The genetic and genome resources available for health studies of the domestic cat are 
becoming sufficiently robust and cost efficient.  The sequencing of a cat’s entire genome can 
now be completed for under $2,000 USD.  The 50-hour and now the 26-hour genome efforts 
have demonstrated how genome medicine in humans can be applied to health management for 
acute care patients with time-critical morbidity and mortalities.  Although the availability of the 
bioinformatics infrastructure and speed are not yet available in cats as available for humans, the 
DNA variant database developed by the 99 Lives Cat Genome Sequencing Initiative has proven 
valuable.  Developed from a variety of cats from diverse populations and breeds, including cats 
with no known and known genetic health problems, the cat variant database supports the 
identification of DNA variants that are rare and causal for health conditions suspected to have a 
genetic component.  Two whole genome sequencing (WGS) studies have already identified 
three DNA variants in cats that are associated with progressive retinal atrophy in Persian cats, 
the bobbed tail of the Japanese Bobtail breed,  and Congenital Myasthenic syndrome in Devon 
rex and Sphynx – related cats.   

Precision medicine is an emerging approach for disease treatment and prevention that takes 
into account individual variability in genes, environment, and lifestyle.  President Obama 
announced the Precision Medicine Initiative® (PMI) in his State of the Union address in 2015.  
Most medical treatments have been designed for the “average patient”. Precision Medicine 
gives clinicians tools to better understand the complex mechanisms underlying a patient’s 
health, disease, or condition, and to better predict which treatments will be most effective.  
Overall, an individual’s specific genetic make-up will become an intricate part of their standard 
health care. Can cats have Precision Medicine too? 

To date, over 40 genes with approximately 70 DNA variants have been documented to cause 
phenotypic, disease or blood type variations in the domestic cat.  The clinical descriptions and 
phenotypes of each of these diseases and traits have been curated at the Online Mendelian 
Inheritance in Animals (OMIA) website (http://omia.angis.org.au/home/), which is an invaluable 
resource comparison of the phenotypes across 2216 animal species.  These known variants 
and newly identified DNA variants can be genotyped rapidly and cost effectively in panels that 
appropriate for breeds, populations or in feline patients as part of wellness care. The vigilance of 
veterinarians and the collaboration with geneticists could lead to the rapid discovery of 
undiagnosed genetic conditions in cats, which hopefully lead to more effective and proactive 
treatments. 

The 26 genes in Table 1 are often under positive selection in cats, particularly breeds; however, 
not all of the variants may be considered “good” by current standards.  Once cats became 
domesticated, some of the first noticeable genetic alterations conferred phenotypic variations, 
such as fur length, fur type, coat colors, and coat patterns.  If you know your alphabet, you can 
basically remember most of the phenotypic genes and loci that affect the appearance of a cat. 

A few of the DNA variants listed in Table 1 may not be considered “good” by current cat 
breeding standards.  Indeed, many of the coat color variants, such as White and Spotting may 
be detrimental in the feral state, especially since they have not been documented in wildcats 
(Felis silvestris).  The Manx DNA alterations are lethal in utero in the homozygous state and 
many Manx cats have issues with lameness, incontinence and constipation.  The discovery of 
the Tailless variants has also revealed that Japanese Bobtail cats do not have DNA changes in 
the same gene and that the PixieBob breed has Manx and Japanese Bobtail genetic 
contributions.  Many argue that the hairless phenotypes are “too unnatural” for a cat and they 
can suffer from potential hypothermia and sun burn. Dwarfism is another controversial 



phenotype, propagated as the Munchkin cat breed.  However, the dwarfism breed and the DNA 
variant have not been scientifically documented and health concerns not yet identified.  Other 
well-known health concerns are the Scottish Fold phenotype, which is associated with 
osteochondrodysplasia.  Many breeders seem to think that osteochrondrodysplasia occurs only 
in the homozygous cat.  Likely, some disease in heterozygote cats manifestations sub-clinically.  
In addition, dominant White is associated with deafness and increased risks of melanomas due 
to depigmentation and UV-exposure.  Deciphering the gene alleles associated with Scottish 
Folds and dominant White cats will likely help us to understand the basic biology of the genes 
and the role of genetic modifiers that influence the undesired and linked health concerns. 

The genetically characterized diseases and health concerns for specific cat breeds are 
presented in Table 2.  Most of the identified disease tests in cats that are very specific to breeds 
and populations are available as commercial genetic tests offered by university-associated and 
private laboratories.  These DNA variants should be monitored by cat breed registries and 
become the cat DNA alterations that are most familiar to veterinary practitioners as they are 
useful diagnostics.   

Some DNA variants that were found in a specific breed, such as mucopolysaccharidosis Type 
VI in the Siamese, were found in a specific individual and the variant is not of significant concern 
in the breed.  Table 3 lists cat DNA alterations identified in random bred cats and disease 
conferring variants that have not propagated within a breed.  These genetic variants should not 
be part of routine screening by cat breeders and registries, but clinicians should know that 
genetic tests are available for diagnostic purposes, especially from research groups with 
specialized expertise.  If similar conditions are suspected in cats, researchers will generally 
consider testing for the known variant as a non-commercial service and may continue analysis 
of the entire gene to determine if new DNA alterations can be identified and causative for this 
particular condition.  Other biomarkers are also available at these specialized laboratories to 
help decipher between specific conditions, such as the lysosomal storage diseases and 
metabolism orders. 

Domestic cats have an easily distinguishable karyotype consisting of 18 autosomal 
chromosomes and the XY sex chromosome pair, resulting in a 2N complement of 38 
chromosomes for the cat genome.  Cat chromosomes are clearly defined by size; centromere 
position; distinctive giemsa banding patterns of the short (p) and long (q) arms of each 
chromosome; and the presence of only a few small acrocentric chromosomes.  The alignment 
of genes on chromosomes in cats is very similar to the genomic organization in humans.  
Humans have their genes distributed onto 22 autosomes, therefore only a small number of 
changes are required to rearrange the same genes onto 18 autosomes, as found in cats.  Most 
mammals have ~21,000 genes residing on their chromosomes and the coding portion of these 
genes is conserved across species.  Many of the trait and disease mutations identified to date 
have been in exons, the coding portions of genes.  However, all species are discovering that the 
regulatory elements in the non-coding portions of genes, such as introns and untranslated 
regions, harbor > 60% of causal mutations for diseases and trait. 

A result of the Human Genome Project has been the development of rapid and cost effective 
means to sequence an entire genome of an individual in less than one month.  Currently, whole 
genome sequencing is becoming the standard of health care for genetic profiling of cancers, 
which can dictate the proper selection of chemotherapies based on DNA mutations of the tumor.  
At specialized centers around the world, newborns with sporadic, congenital abnormalities can 
be whole genome sequenced, which often, but not always, detects the cause of their maladies.  
Since over 100,000 people have now had their genomes sequenced, the database of normal 
and detrimental genetic variants is fairly well defined in some human populations but requires 
greatly better definition in others.  Likely, whole genome sequencing will become part of the 



health care package for human health.  Recently, the $1,000 genome cost has been reached for 
humans, shortly this technology will be adapted for other species.  For cats, currently whole 
genome sequencing is being used to investigate diseases and traits that are known to be 
heritable, and when sufficient individuals are not available for a different means of genetic 
analysis, such as family studies or case-control association studies.  Like humans, eventually, 
the genetic variant databases will be sufficient for the analysis of an individual cat with an 
unusual health presentation.   

A cooperative approach that supports small laboratories that do not have vast resources and 
skills, particularly for bioinformatics, is allowing new investigators, particularly with veterinary 
backgrounds, to participant in DNA variant discovery for health concerns.  Thus, the concept of 
a low cost, centralized genome sequencing effort has developed for cat researchers – the 99 
Lives Cat Genome Sequencing Initiative. The 99 Lives project has a centralized resource with 
genome sequences produced of similar quality and similar techniques to facilitate variant 
discovery.  The resource is expected to help develop a higher density DNA array for complex 
diseases studies in common cats – regular house cats and to support researchers with variant 
discovery and for evolutionary studies.  The 99 Lives Cat Genome Sequencing Initiative 
(http://felinegenetics.missouri.edu/ninety-nine-lives) has been launched to meet the same 
standard in health care for cats as for humans.  The sporadic or idiopathic conditions will slowly 
be determined to have individual specific genetic causes, leading to highly specific personalized 
medicine for our companion animals. 



Table 1 The phenotypic traits of the domestic cat. 

Disease / Trait (alleles)  
OMIA Entry 

MOI‡ Phenotype Gene Gene Name  Mutation  

Agouti (A+, a, APbe)1, 2 
000201-9685 

AR Banded fur to solid ASIP Agouti-signaling protein  c.122_123delCA; Pbe haplotype  

Brown (B+, b, bl)3, 4 
001249-9685 

AR Brown, light brown color variants TYRP1 Tyrosinase related protein  b = -5IVS6, bl = c.298C>T  

Color (C+, Cb, Cs, c)4-6 
000202-9685 

AR Burmese, Siamese color pattern, full 
albino 

TYR Tyrosinase  cb = c.715G>T, cs = c.940G>A, c 
= c.975delC 

 

Dilution (D+, d)7 
000206-9685 

AR Black to grey / blue, 
Orange to cream 

MLPH Melanophilin  c.83delT  

Dwarfism 
000299-9685 

AD Shortening of long bones unknown unknown  unknown  

Extension (E+, e, er) – Amber8 
001199-9685 

AR Brown/red color variant MC1R Melanocortin receptor 1  c.250G>A; c.439TCT  

Fold (Fd, fd+)9 
000319-9685 

AD Ventral ear fold TRPV4 Transient Receptor Potential 
cation channel, subfamily V, 

member 4 

 c.1024G>T  

Gloves (G+, g)10 
001580-9685 

AR White feet KIT KIT  c.1035_1036delinsCA  

Hairless (Hr+, hr) AR Atrichia KRT71 Keratin 71  c.816+1G>A   
Inhibitor (I, i+)  
001583-9685 

AD Absence of phaeomelanin unknown unknown  unknown  

Japanese Bobtail (J, j+)11 AD Kinked tail HES7 Hairy and Enhancer of Split 
family, transcription factor 7 

 c.5A>G  

Kurl (K, k+)  
000244-9685 

AD Rostral curled pinnea unknown unknown  unknown  

LaPerm  
000245-9685 

AD Curly hair coat unknown Unknown  unknown  

Longhair (L+, l)12, 13  
000439-9685 

AR Long fur FGF5 Fibroblast growth factor 5  c.356_367insT, c.406C>T, 
c.474delT, c.475A>C 

 

Lykoi AR Absent undercoat unpub unpub  unpub  
Manx (M, m+)14 
000975-9685 

AD Absence/short tail TBOX T – box  c.998delT, c.1169delC, and 
c.1199delC, 

c.998_1014dup17delGCC 

 

Orange (O, o+) X linked Change in pigment hue unknown unknown  unknown  
Peterbald  AD Hairless, brush coat unknown unknown  unknown  



‡ Mode of inheritance of the non-wild type variant.  A “+” implies the wild type allele when known. In reference to the mutant allele, AD implies 
autosomal dominant, AR implies autosomal recessive, co-D implies co-dominant. OMIA: Online Mendelian Inheritance in Animals 
(http://omia.angis.org.au/home/) entries provides links to citations and clinical descriptions of the phenotypes and the diseases. Presented 
citations are for the causative variant discovery. 

001201-9685 
Polydactyla (Pd, pd+)15 
000810-9685 

AD Extra toes SHH Sonic hedgehog  c.479A>G, c.257G>C, c.481A>T  

Rexing (R+, r)16  
001684-9685 

AR Curly hair coat LPAR6 Lysophosphatidic acid receptor 6  c.250_253delTTTG  

Rexing (Re+, re)17  
001581-9685 

AR Curly hair coat KRT71 Keratin 71  c.1108-4_1184del, 
c.1184_1185insAGTTGGAG, 

c.1196insT  

 

Rexing (RS, rs+)18 
001712-9685 

AD Curly hair coat KRT71 Keratin 71  c.445-1G>C  

Spotting (S, s+)19 
000214-9685 

Co-D Bicolor / van white KIT KIT  7125ins FERV1 element  

Tabby(TM, tb)20 
001429-9685 

AR Blotched/classic pattern TAQPEP Transmembrane aminopeptidase 
Q 

 S59X, T139N, D228N, W841X  

Ticked (Ta, t)  
001484-9685 

AD No Tabby pattern unknown unknown  unknown  

White (W, w+)19 
000209-9685 

AD Loss of pigmentation KIT KIT  FERV1 LTR ins  

Wide-band AR? Length of pheomelanin band in hair unknown unknown  unknown  



Table 2 Inherited diseases of domestic cats for which a commercial DNA test is available  

‡ Mode of inheritance of the non-wild type variant. Not all transcripts for a given gene may have been discovered or well documented in the cat, 
mutations presented as interpreted from original publication.  A “+” implies the wild type allele when known. In reference to the mutant allele, AD 
implies autosomal dominant, AR implies autosomal recessive, co-D implies co-dominant. OMIA: Online Mendelian Inheritance in Animals 
(http://omia.angis.org.au/home/) entries provides links to citations and clinical descriptions of the phenotypes and the diseases. Presented 
citations are for the causative variant discovery. 
  

Disease / Trait (alleles) OMIA 
Entry 

 
MOI‡ 

 
Phenotype 

 
Gene 

 
Gene Name 

 
Mutation 

 

AB Blood Type (A+, AB, b)21, 

22 000119-9685 
AR Determines Type B CMAH cytidine monophospho-N-

acetylneuraminic acid 
hydroxylase 

c.1del-53_70, c.139G>A  

Craniofacial Defect23 AR Craniofacial Defect ALX1 Aristaless-Like Homeobox 1 c.496delCTCTCAGGACTG  
Gangliosidosis 124         000402-
9685 

AR Lipid storage disorder (GM1) GLB1 Galactosidase, beta 1 c.1457G>C  

Gangliosidosis 225           01462-
0985 

AR Lipid storage disorder (GM2) HEXB Hexominidase B c.1356del-1_8, 
c.1356_1362delGTTCTCA 

 

Gangliosidosis 226            
01462-0985 

AR Lipid storage disorder (GM2) HEXB Hexominidase B c.39delC  

Glycogen Storage Dis. IV27  
000420-9685 

AR Glycogen storage disorder(GSD) GBE1 Glycogen branching enzyme 1 IVS11+1552_IVS12-1339 
del6.2kb ins334 bp 

 

Hypertrophic Cardiomyopathy28  
000515-9685 

AD Cardiac disease (HCM) MYBPC Myosin binding protein C c.93G>C  

Hypertrophic Cardiomyopathy29 
000515-9685 

AD Cardiac Disease (HCM) MYBPC Myosin binding protein C c.2460C>T  

Hypokalemia30 
001759-9685 

AR Potassium deficiency (HK) WNK4 WNK lysine deficient protein 
kinase 4 

c.2899C>T  

Progressive Retinal Atropy31 
001244-9685 

AR Late onset blindness (rdAC) CEP290 Centrosomal protein 290kDa IVS50 + 9T>G  

Progressive Retinal Atropy32  
000881-9685 

AD Early onset blindness (rdy) CRX Cone-rod homeobox c.546delC  

Polycystic Kidney Disease33 
000807-9685 

AD Kidney cysts (PKD) PKD1 Polycystin 1 c.10063C>A  

Pyruvate Kinase Def.34  
000844-9685 

AR Hemopathy (PK Deficiency) PKLR pyruvate kinase, liver, RBC c.693+304G>A 
 

 

Spinal Muscular Atrophy35 
000939-9685 

AR Muscular atrophy (SMA) LIX1-
LNPEP 

limb expression 1 homolog -  
leucyl/cystinyl aminopeptidase 

Partial gene deletions  



Table 3 Uncommon mutations for inherited domestic cat diseases†. 
 
Disease / OMIA Entry OMIA Entry Gene Mutation‡ 

11b-hydroxylase 
Def. (Congenital Adrenal Hypoplasia)36 

001661-9685 CYP11B1 Exon 7 G>A 

Congenital Myasthenic Syndrome37  CLCN1 c.1930+1G>T 

Dihydropyrimidinase Deficiency38 001776-9685 DPYS c.1303G>A 
Factor XII Deficiency39 000364-9685 FXII c.1321delC 

Fibrodysplasia Ossificans Progressiva 000388-9685 unpub unpub 
Gangliosidosis 140 000402-9685 GLB1 c.1448G>C 

Gangliosidosis 241 001462-9685 HEXB c.1467_1491inv 
Gangliosidosis 242 001462-9685 HEXB c.667C>T 

Gangliosidosis 227 001427-9685 GM2A c.390_393GGTC 
Hemophilia B43 000438-9685 F9 c.247G>A, c.1014C>T 

Hyperoxaluria44 000821-9685 GRHPR G>A I4 acceptor site 

Hypothyroidism 000536-9685 unpub unpub 
Lipoprotein Lipase Deficiency45 001210-9685 LPL c.1234G>A 
Mucolipidosis II46 001248-9685 GNPTAB c.2655C>T 
Mannosidosis, alpha47 000625-9685 LAMAN c.1748_1751delCCAG 
Mucopolysaccharidosis I48  000664-9685 IDUA c.1107_1109delCGA; c.1108_1110GAC 
Mucopolysaccharidosis VI49 000666-9685 ARSB c.1427T>C 
Mucopolysaccharidosis VI50, 51 000666-9685 ARSB c.1558G>A 
Mucopolysaccharidosis VII52 000667-9685 GUSB c.1052A>G 
Muscular Dystrophy53 001081-9685 DMD 900bp del M promoter -exon 1 
Niemann-Pick C Type 154 000725-9685 NPC1 c.2864G>C 
Niemann-Pick C Type 255  NPC2 c.82+5G>A 
Polydactyly15 000810-9685 SHH c.479A>G, c.257G>C, c.481A>T 
Porphyria (congenital erythropoietic)56* 001175-9685 UROS c.140C>T, c.331G>A 
Porphyria (acute intermittent)57* 001493-9685 HMBS c.842_844delGAG, c.189dupT, c.250G>A, 

c.445C>T 
Vitamin D Resistant Rickets58 000837-9685 CYP27B1 c.223G>A, c.731delG 
Vitamin D Resistant Rickets59 000837-9685 CYP27B1 c.637G>T 



† The presented conditions are not prevalent in breeds or populations but may have been established into research colonies.  ‡ Not all transcripts 
for a given gene may have been discovered or well documented in the cat, mutations presented as interpreted from original publication. *A variety 
of mutations have been identified, yet unpublished for porphyrias in domestic cats.  Contact PennGen at the University of Pennsylvania for 
additional information.  OMIA: Online Mendelian Inheritance in Animals (http://omia.angis.org.au/home/) entries provides links to citations and 
clinical descriptions of the phenotypes and the diseases. Presented citations are for the causative variant discovery. 
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